We consider the setup of a constrained optimization problem with two agents $E_1$ and $E_2$ who jointly wish to learn the optimal solution set while keeping their feasible sets $\mathcal{P}_1$ and $\mathcal{P}_2$ private from each other. The objective function $f$ is globally known and each feasible set is a collection of points from a global alphabet. We adopt a sequential symmetric private information retrieval (SPIR) framework where one of the agents (say $E_1$) privately checks in $\mathcal{P}_2$, the presence of candidate solutions of the problem constrained to $\mathcal{P}_1$ only, while learning no further information on $\mathcal{P}_2$ than the solution alone. Further, we extract an information theoretically private threshold PSI (ThPSI) protocol from our scheme and characterize its download cost. We show that, compared to privately acquiring the feasible set $\mathcal{P}_1\cap \mathcal{P}_2$ using an SPIR-based private set intersection (PSI) protocol, and finding the optimum, our scheme is better as it incurs less information leakage and less download cost than the former. Over all possible uniform mappings of $f$ to a fixed range of values, our scheme outperforms the former with a high probability.
翻译:暂无翻译