Latent variable models (LVMs) represent observed variables by parameterized functions of latent variables. Prominent examples of LVMs for unsupervised learning are probabilistic PCA or probabilistic SC which both assume a weighted linear summation of the latents to determine the mean of a Gaussian distribution for the observables. In many cases, however, observables do not follow a Gaussian distribution. For unsupervised learning, LVMs which assume specific non-Gaussian observables have therefore been considered. Already for specific choices of distributions, parameter optimization is challenging and only a few previous contributions considered LVMs with more generally defined observable distributions. Here, we consider LVMs that are defined for a range of different distributions, i.e., observables can follow any (regular) distribution of the exponential family. The novel class of LVMs presented is defined for binary latents, and it uses maximization in place of summation to link the latents to observables. To derive an optimization procedure, we follow an EM approach for maximum likelihood parameter estimation. We show that a set of very concise parameter update equations can be derived which feature the same functional form for all exponential family distributions. The derived generic optimization can consequently be applied to different types of metric data as well as to different types of discrete data. Also, the derived optimization equations can be combined with a recently suggested variational acceleration which is likewise generically applicable to the LVMs considered here. So, the combination maintains generic and direct applicability of the derived optimization procedure, but, crucially, enables efficient scalability. We numerically verify our analytical results and discuss some potential applications such as learning of variance structure, noise type estimation and denoising.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员