The recent evolution of software and hardware technologies is leading to a renewed computational interest in Particle-In-Cell (PIC) methods such as the Material Point Method (MPM). Indeed, provided some critical aspects are properly handled, PIC methods can be cast in formulations suitable for the requirements of data locality and fine-grained parallelism of modern hardware accelerators such as Graphics Processing Units (GPUs). Such a rapid and continuous technological development increases also the importance of generic and portable implementations. While the capabilities of MPM on a wide range continuum mechanics problem have been already well assessed, the use of the method in compressible fluid dynamics has received less attention. In this paper we present a portable, highly parallel, GPU based MPM solver for compressible gas dynamics. The implementation aims to reach a good compromise between portability and efficiency in order to provide a first assessment of the potential of this approach in solving strongly compressible gas flow problems, also taking into account solid obstacles. The numerical model considered constitutes a first step towards the development of a monolithic MPM solver for Fluid-Structure Interaction (FSI) problems at all Mach numbers up to the supersonic regime.
翻译:暂无翻译