We consider strongly monotone games with convex separable coupling constraints, played by dynamical agents, in a partial-decision information scenario. We start by designing continuous-time fully distributed feedback controllers, based on consensus and primal-dual gradient dynamics, to seek a generalized Nash equilibrium in networks of single-integrator agents. Our first solution adopts a fixed gain, whose choice requires the knowledge of some global parameters of the game. To relax this requirement, we conceive a controller that can be tuned in a completely decentralized fashion, thanks to the use of uncoordinated integral adaptive weights. We further introduce algorithms specifically devised for generalized aggregative games. Finally, we adapt all our control schemes to deal with heterogeneous multi-integrator agents and, in turn, with nonlinear feedback-linearizable dynamical systems. For all the proposed dynamics, we show convergence to a variational equilibrium, by leveraging monotonicity properties and stability theory for projected dynamical systems.


翻译:我们考虑在局部决策信息假设中,由动态物剂在部分决定信息情景下,运用可分解的组合制约,以强烈的单调游戏。我们首先根据共识和原始双梯度动态,设计连续全时分布的反馈控制器,在单一集成物剂网络中寻求普遍纳什均衡。我们的第一个解决方案采用固定收益,其选择需要了解游戏的某些全球参数。为了放松这一要求,我们设想一个控制器,由于使用不协调的整体适应权重,可以完全分散调控。我们进一步引入了专门为通用聚合游戏设计的算法。最后,我们调整了我们的所有控制方案,以对付多种多集成物剂,并转而采用非线性反馈-线性动态系统。对于所有拟议的动态,我们通过利用单调特性和稳定性理论来预测动态系统,表现出与变异平衡的趋同。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员