We are interested in the restoration of noisy and blurry images where the texture mainly follows a single direction (i.e., directional images). Problems of this type arise, for example, in microscopy or computed tomography for carbon or glass fibres. In order to deal with these problems, the Directional Total Generalized Variation (DTGV) was developed by Kongskov et al. in 2017 and 2019, in the case of impulse and Gaussian noise. In this article we focus on images corrupted by Poisson noise, extending the DTGV regularization to image restoration models where the data fitting term is the generalized Kullback-Leibler divergence. We also propose a technique for the identification of the main texture direction, which improves upon the techniques used in the aforementioned work about DTGV. We solve the problem by an ADMM algorithm with proven convergence and subproblems that can be solved exactly at a low computational cost. Numerical results on both phantom and real images demonstrate the effectiveness of our approach.
翻译:我们感兴趣的是恢复噪音和模糊的图像,其纹理主要遵循单一方向(即方向图像),这类问题出现于碳或玻璃纤维的显微镜或计算成的透镜中。为了解决这些问题,Kongskov等人于2017年和2019年在脉冲和高西噪音的情况下开发了“方向性通用变异(DTGV)”,在这一篇文章中,我们侧重于被Poisson噪音腐蚀的图像,将DTGV正规化扩大到数据适当术语为“Kullback-Leibeller”差异的图像恢复模型。我们还提出了确定主要纹理方向的技术,改进了上述关于DTGV的工作所使用的技术。我们通过ADMM算法解决了这一问题,已经证明这种算术的趋同和子问题可以以低的计算成本解决。关于幻影和真实图像的数值结果都表明了我们的方法的有效性。