We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P$\neq$NP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different "degrees" of average-case complexity. We discuss some of these "hardness amplification" results.
翻译:我们调查NP中问题的平均复杂性。我们讨论了好与平均算法的各种概念,并提出了因Impagliazzo和Levin而出现的完整结果。这种完整性结果证明,如果某一具体的(但有些人为的)NP问题在统一分布方面比较容易,那么NP中的所有问题在所有可观分布方面都比较容易与一般情况相同。将理论应用于自然分布问题仍然是一个尚未解决的问题。我们审查了一些自然分布问题,其平均情况复杂程度特别令人感兴趣,而且还不符合这一理论。一个重大的未决问题是,NP中存在的硬平均问题能否以P$\neq$NP假设为依据,还是以相关的最坏情况假设为依据。我们审查的负面结果显示,某些证据技术无法证明这种结果。虽然一般NP问题最坏的情况与一般情况复杂程度之间的关系仍然开放,但在理解普通情况复杂程度不同“程度”之间的关系方面有所进展。我们讨论了这些“硬性调整”的结果。