In this paper we explain a process of super-resolution reconstruction allowing to increase the resolution of an image.The need for high-resolution digital images exists in diverse domains, for example the medical and spatial domains. The obtaining of high-resolution digital images can be made at the time of the shooting, but it is often synonymic of important costs because of the necessary material to avoid such costs, it is known how to use methods of super-resolution reconstruction, consisting from one or several low resolution images to obtain a high-resolution image. The american patent US 9208537 describes such an algorithm. A zone of one low-resolution image is isolated and categorized according to the information contained in pixels forming the borders of the zone. The category of it zone determines the type of interpolation used to add pixels in aforementioned zone, to increase the neatness of the images. It is also known how to reconstruct a low-resolution image there high-resolution image by using a model of super-resolution reconstruction whose learning is based on networks of neurons and on image or a picture library. The demand of chinese patent CN 107563965 and the scientist publication "Pixel Recursive Super Resolution", R. Dahl, M. Norouzi, J. Shlens propose such methods. The aim of this paper is to demonstrate that it is possible to reconstruct coherent human faces from very degraded pixelated images with a very fast algorithm, more faster than compressed sensing (CS), easier to compute and without deep learning, so without important technology resources, i.e. a large database of thousands training images (see arXiv:2003.13063). This technological breakthrough has been patented in 2018 with the demand of French patent FR 1855485 (https://patents.google.com/patent/FR3082980A1, see the HAL reference https://hal.archives-ouvertes.fr/hal-01875898v1).


翻译:在本文中,我们解释一个超分辨率重建的过程, 以便提高图像的分辨率。 需要高分辨率数字图像, 以便提高图像的分辨率。 在不同领域, 例如医疗和空间域, 需要高分辨率数字图像。 在拍摄时, 可以获得高分辨率数字图像, 但通常与重要成本相提并论, 因为有避免成本的必要材料, 人们知道如何使用超分辨率重建的方法, 包括一个或几个低分辨率图像, 以获得高分辨率图像。 美国专利 US 9208537 描述这样的算法。 一个低分辨率图像的区, 根据形成该区边界的像素中所含信息进行隔离和分类。 高分辨率图像的类别决定了在上述区域添加像素的类型, 增加图像的精度。 人们也知道如何通过使用超分辨率重建模型来重建那里的低分辨率图像( 以神经元的网络和图像或图片图书馆为基础进行学习 ) 。 一个低分辨率专利 CN 10756- 3965 的区域域域域域域域域域域域, 以及一个不具有重要 的科学家出版物“ Prix 技术 ” 显示 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Python图像处理,366页pdf,Image Operators Image Processing in Python
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员