Innovative foundation models, such as GPT-4 and stable diffusion models, have made a paradigm shift in the realm of artificial intelligence (AI) towards generative AI-based systems. AI and machine learning (AI/ML) algorithms are envisioned to be pervasively incorporated into the future wireless communications systems. In this article, we outline the applications of diffusion models in wireless communication systems, which are a new family of probabilistic generative models that have showcased state-of-the-art performance. The key idea is to decompose data generation process over "denoising" steps, gradually generating samples out of noise. Based on two case studies presented, we show how diffusion models can be employed for the development of resilient AI-native communication systems. Specifically, we propose denoising diffusion probabilistic models (DDPM) for a wireless communication scheme with non-ideal transceivers, where 30% improvement is achieved in terms of bit error rate. In the other example, DDPM is employed at the transmitter to shape the constellation symbols, highlighting a robust out-of-distribution performance.
翻译:暂无翻译