Community search is a problem that seeks cohesive and connected subgraphs in a graph that satisfy certain topology constraints, e.g., degree constraints. The majority of existing works focus exclusively on the topology and ignore the nodes' influence in the communities. To tackle this deficiency, influential community search is further proposed to include the node's influence. Each node has a weight, namely influence value, in the influential community search problem to represent its network influence. The influence value of a community is produced by an aggregated function, e.g., max, min, avg, and sum, over the influence values of the nodes in the same community. The objective of the influential community search problem is to locate the top-r communities with the highest influence values while satisfying the topology constraints. Existing studies on influential community search have several limitations: (i) they focus exclusively on simple aggregation functions such as min, which may fall short of certain requirements in many real-world scenarios, and (ii) they impose no limitation on the size of the community, whereas most real-world scenarios do. This motivates us to conduct a new study to fill this gap. We consider the problem of identifying the top-r influential communities with/without size constraints while using more complicated aggregation functions such as sum or avg. We give a theoretical analysis demonstrating the hardness of the problems and propose efficient and effective heuristic solutions for our topr influential community search problems. Extensive experiments on real large graphs demonstrate that our proposed solution is significantly more efficient than baseline solutions.


翻译:社区搜索是一个在图表中寻找具有凝聚力和联系的子集的问题,该图将满足某些地形限制,例如程度限制。现有工作的大多数完全侧重于地形学,忽视节点在社区的影响。为了解决这一缺陷,还提议在有影响力的社区搜索中包括节点的影响。每个节点都具有一定的份量,即影响价值,在有影响力的社区搜索问题中代表其网络影响。一个社区的影响价值是通过一个综合功能产生的,例如,最大、最小、最大、最大和总值对同一社区结点的影响值的影响值。有影响力的社区搜索问题的目标是在满足顶点限制的同时找到具有影响力的顶层社区。关于有影响力的社区搜索的现有研究有若干局限性:(一) 仅侧重于简单的集合功能,比如微小,这可能会在许多现实世界情景中达不到某些要求。它们并没有对社区的规模施加任何限制,而大多数现实世界情景则确实如此。这促使我们开展一项新的研究,以最有影响力的数值定位来填补这一社区,而我们则以更具有影响力的深度的深度的深度分析,而我们则认为,一个最有影响力的深度的深度的深度的深度的深度的理论范围问题是,我们用一个最深层次的、最深层次的、最深层次上的问题。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员