A key challenge in the practical application of Gaussian processes (GPs) is selecting a proper covariance function. The moving average, or process convolutions, construction of GPs allows some additional flexibility, but still requires choosing a proper smoothing kernel, which is non-trivial. Previous approaches have built covariance functions by using GP priors over the smoothing kernel, and by extension the covariance, as a way to bypass the need to specify it in advance. However, such models have been limited in several ways: they are restricted to single dimensional inputs, e.g. time; they only allow modelling of single outputs and they do not scale to large datasets since inference is not straightforward. In this paper, we introduce a nonparametric process convolution formulation for GPs that alleviates these weaknesses by using a functional sampling approach based on Matheron's rule to perform fast sampling using interdomain inducing variables. Furthermore, we propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models, and allows the covariance functions of the intermediate layers to be inferred from the data. We test the performance of our model on benchmarks for single output GPs, multiple output GPs and deep GPs and find that our approach can provide improvements over standard GP models, particularly for larger datasets.
翻译:Gaussian 进程( GPs) 实际应用中的一个关键挑战是选择一个适当的共变函数。 移动平均值或进程变换, GPs的构建允许一些额外的灵活性, 但仍然需要选择一个适当的平滑内核, 这是一种非三重性。 以前的处理方法已经通过使用 GP 前端对平滑内核, 并通过延伸共变法建立了共变法功能, 从而绕过提前指定该功能的需要。 但是, 这些模型在几个方面是有限的: 它们局限于单维输入, 例如时间; 它们只允许单个输出的建模, 并且由于推断不直截了当, 它们不至于大数据集。 在本文中, 我们为GPs引入了一种非参数性进化过程变换公式, 通过使用基于 Matheron 规则的功能抽样方法, 来利用内部诱导变变量进行快速取样, 从而减轻这些弱点。 此外, 我们提议了这些非对等变变法的构成, 用来替代典型的深度GPs 模型, 并且允许对高级GPs 模型的共变法功能功能功能, 用于从我们的多个输出测算。