Evolutionary algorithms are bio-inspired algorithms that can easily adapt to changing environments. Recent results in the area of runtime analysis have pointed out that algorithms such as the (1+1)~EA and Global SEMO can efficiently reoptimize linear functions under a dynamic uniform constraint. Motivated by this study, we investigate single- and multi-objective baseline evolutionary algorithms for the classical knapsack problem where the capacity of the knapsack varies over time. We establish different benchmark scenarios where the capacity changes every $\tau$ iterations according to a uniform or normal distribution. Our experimental investigations analyze the behavior of our algorithms in terms of the magnitude of changes determined by parameters of the chosen distribution, the frequency determined by $\tau$, and the class of knapsack instance under consideration. Our results show that the multi-objective approaches using a population that caters for dynamic changes have a clear advantage on many benchmarks scenarios when the frequency of changes is not too high. Furthermore, we demonstrate that the diversity mechanisms used in popular evolutionary multi-objective algorithms such as NSGA-II and SPEA2 do not necessarily result in better performance and even lead to inferior results compared to our simple multi-objective approaches.
翻译:进化算法是能够很容易地适应变化环境的生物驱动算法。运行时间分析领域的最新结果表明,(1+1)~EA和Global SEMO等算法可以在动态统一制约下有效地重新优化线性功能。受本研究的驱动,我们调查了古典Knapsack问题的单一和多目标基线进化算法,在这些情况下, knapsack 的能力随时间变化而变化。我们建立了不同的基准假设,在这些假设中,能力根据统一或正常分布而改变每1美元迭代。我们实验调查分析了我们算法在所选分布参数、 $\tou 确定频率和所考虑的 knapsack 实例类别所决定的变化规模方面的行为。我们的结果显示,在变化频率不高的情况下,使用适应动态变化的人口的多目标进化方法在许多基准假设中具有明显优势。此外,我们证明,在诸如NSGA-II 和 SPEA2 等流行进化多目标算法中所使用的多样性机制,不一定导致更好的性、甚至更低级的结果。