Semantic parsers map natural language utterances to meaning representations. The lack of a single standard for meaning representations led to the creation of a plethora of semantic parsing datasets. To unify different datasets and train a single model for them, we investigate the use of Multi-Task Learning (MTL) architectures. We experiment with five datasets (Geoquery, NLMaps, TOP, Overnight, AMR). We find that an MTL architecture that shares the entire network across datasets yields competitive or better parsing accuracies than the single-task baselines, while reducing the total number of parameters by 68%. We further provide evidence that MTL has also better compositional generalization than single-task models. We also present a comparison of task sampling methods and propose a competitive alternative to widespread proportional sampling strategies.
翻译:语义解析器绘制了自然语言表达到意思表示的表达方式。 缺乏单一的表达方式标准导致生成了大量的语义解析数据集。 为了统一不同的数据集并为它们训练一个单一模型, 我们调查了多任务学习( MTL) 结构的使用情况。 我们实验了五个数据集( Geoquery、 NLMaps、 TOP、 夜间、 AMR ) 。 我们发现, 跨数据集共享整个网络的 MTL 结构可以产生比单任务基线具有竞争力或更好的理解, 同时将参数总数减少68%。 我们还提供了证据, MTL 也比单任务学习( MTL) 模型有更好的构成概括性。 我们还对任务抽样方法进行了比较,并提出了广泛比例抽样战略的竞争性替代方案。