We consider estimation of the extreme value index and extreme quantiles for heavy-tailed data that are right-censored. We study a general procedure of removing low importance observations in tail estimators. This trimming procedure is applied to the state-of-the-art estimators for randomly right-censored tail estimators. Through an averaging procedure over the amount of trimming we derive new kernel type estimators. Extensive simulation suggests that one of the new considered kernels leads to a highly competitive estimator against virtually any other available alternative in this framework. Moreover, we propose an adaptive selection method for the amount of top data used in estimation based on the trimming procedure minimizing the asymptotic mean squared error. We also provide an illustration of this approach to simulated as well as to real-world MTPL insurance data.
翻译:我们考虑对极值指数和极小量值进行估计,以估计右侧的重尾部数据。我们研究了在尾尾部估计器中去除低重要性观测结果的一般程序。这种三角程序适用于随机右侧检查的尾部估计器。我们通过一个平均程序比三角体多出一个新的内核类型测深器。广泛的模拟表明,新考虑的内核之一导致一个高度竞争的估测器,而这个框架中几乎是任何其他可用的替代物。此外,我们提议了一种适应性选择方法,用于根据减低三边程序估计的顶级数据数量,以尽量减少无症状的平均平方误差。我们还举例说明了模拟和真实世界的MTPL保险数据。