The correlated binomial (CB) distribution was proposed by Luce\~no (Computational Statistics $\&$ Data Analysis, 20, 1995, 511-520) as an alternative to the binomial distribution for the analysis of the data in the presence of correlations among events. Due to the complexity of the mixture likelihood of the model, it may be impossible to derive analytical expressions of the maximum likelihood estimators (MLEs) of the unknown parameters. To overcome this difficulty, we develop an expectation-maximization algorithm for computing the MLEs of the CB parameters. Numerical results from simulation studies and a real-data application showed that the proposed method is very effective by consistently reaching a global maximum. Finally, our results should be of interest to senior undergraduate or first-year graduate students and their lecturers with an emphasis on the interested applications of the EM algorithm for finding the MLEs of the parameters in discrete mixture models.
翻译:Lucéñno(计算统计数据分析,20,1995,511-520美元)提出了相关的二进制分布法(CB),作为在各种事件相互关联的情况下分析数据的二进制分布法的替代办法;由于模型的混合可能性的复杂性,可能无法得出未知参数最大概率估计器(MLEs)的分析表达法;为了克服这一困难,我们为计算CB参数的 MLE制定了一种预期-最大化算法。模拟研究和实际数据应用的数值结果表明,拟议的方法非常有效,可以持续达到全球最高值。最后,我们的结果应该让高级本科生或一年级研究生及其讲师感兴趣,重点是EM算法在寻找离散混合物模型参数的 MLE的有用应用。