Three state-of-the-art language-and-image AI models, CLIP, SLIP, and BLIP, are evaluated for evidence of a bias previously observed in social and experimental psychology: equating American identity with being White. Embedding association tests (EATs) using standardized images of self-identified Asian, Black, Latina/o, and White individuals from the Chicago Face Database (CFD) reveal that White individuals are more associated with collective in-group words than are Asian, Black, or Latina/o individuals. In assessments of three core aspects of American identity reported by social psychologists, single-category EATs reveal that images of White individuals are more associated with patriotism and with being born in America, but that, consistent with prior findings in psychology, White individuals are associated with being less likely to treat people of all races and backgrounds equally. Three downstream machine learning tasks demonstrate biases associating American with White. In a visual question answering task using BLIP, 97% of White individuals are identified as American, compared to only 3% of Asian individuals. When asked in what state the individual depicted lives in, the model responds China 53% of the time for Asian individuals, but always with an American state for White individuals. In an image captioning task, BLIP remarks upon the race of Asian individuals as much as 36% of the time, but never remarks upon race for White individuals. Finally, provided with an initialization image from the CFD and the text "an American person," a synthetic image generator (VQGAN) using the text-based guidance of CLIP lightens the skin tone of individuals of all races (by 35% for Black individuals, based on pixel brightness). The results indicate that biases equating American identity with being White are learned by language-and-image AI, and propagate to downstream applications of such models.


翻译:在社会心理学家、单类EATs对过去在社会和实验心理学中观察到的美国身份的三个核心方面进行评估,以证明先前观察到的偏见:将美国身份等同于白种人;使用自我识别的亚洲、黑人、拉美人/人和白人的标准图像进行结社测试(EATs),芝加哥脸数据库(CFD)显示,白种人比亚洲、黑人或拉美人/人更多地与集体语言有联系;在社会心理学家、黑人或拉美人/人(CLIP、SLIP、BLIP和BLIP)对美国身份的三个核心方面的评估中,单类EATs显示,白种人的形象更多地与爱国主义相关,而出生于美国,但是与以前在心理学中发现的结果一致,白种人与所有种族和背景的人(EATs)的标准化(EATs)测试中,有97%的白种人与亚种人(CFID)的直系信息,只有3 %。 当个人(C-时间对白种语言进行个人描述时,但对白种人的直系个人),“CQQalimalalalalalal) 个人(CQalality),对亚种个人(C) 个人(C-im) 个人(C)的直系个人(Cxxxxxxxxxalalalalalal) 个人(Cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) 个人, 个人, 个人, 个人, 个人, 个人, 个人 个人, 个人的直)。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月23日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
12+阅读 · 2020年8月3日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员