We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos that give us access to only the face, speech and text. We leverage latent vectors corresponding to Affective and Cognitive features frequently used in psychology literature to understand a person's level of engagement in a semi-supervised GAN-based framework. The method is extremely useful in the case of telehealth. We showcase the efficacy of this method from the perspective of mental health and more specifically how this can be leveraged for a better understanding of patient engagement during telemental health sessions. We also explore the usefulness of our framework and contrast it against existing works in being able to estimate another important mental health indicator, namely valence, and arousal. Our framework reports 40% improvements in RMSE over SOTA method in Engagement Regression and 50% improvements in RMSE over SOTA method in Valence-Arousal Regression. To tackle the scarcity of publicly available datasets in the telemental health space, we release a new dataset, MEDICA, for mental health patient engagement detection. Our dataset, MEDICA consists of 1299 videos, each 3 seconds long. To the best of our knowledge, our approach is the first method capable to model telemental health session data based on psychology-driven Affective and Cognitive features, which also accounts for data sparsity by leveraging a semi-supervised setup. To assert the usefulness of our method, we will also compare the association of the engagement values obtained from our model with the other engagement measures used by psychotherapists.
翻译:我们从视频中展示了MET, 这是一种基于学习的算法, 用来感知人的接触水平, 使我们只能接触到面部、言语和文字。 我们利用心理学文献中常用的视觉和认知特征来利用潜伏矢量来理解一个人在半监督的GAN框架中的参与程度。 这种方法在远程保健方面极为有用。 我们从心理健康的角度来展示这一方法的功效,更具体地说,如何利用这一方法来更好地了解病人在远程保健会议中的接触程度。 我们还探索了我们的框架的效用,并将这一框架与现有的工作对比起来,以便评估另一个重要的心理健康指标,即价值和启发性。 我们的框架报告说,在SOTA方法上比SATA方法改进了40%,而在SOTA方法上则提高了50%。 我们从心理保健空间公开提供的数据集的缺乏,我们发布了一个新的数据集,MEICA, 用来检测心理健康病人的接触程度与现有工作对比, 即价值值, 我们的数据设置的RMEICA方法, 也是以12-SO级方法为基础, 以12-Sy Feal Feal 数据模型为基础, 通过我们最精确的方法, 我们的计算方法, 以12- cal- colviolviolviolvical的方法, 将使用了我们最精确的系统的方法将使用了我们最精确的系统的方法, 数据方法的系统方法, 以12- cho- cal- cal-ho- cal-ho- cisalvialvial 。