We aim to analyze the behaviour of a finite-time stochastic system, whose model is not available, in the context of more rare and harmful outcomes. Standard estimators are not effective in making predictions about such outcomes due to their rarity. Instead, we use Extreme Value Theory (EVT), the theory of the long-term behaviour of normalized maxima of random variables. We quantify risk using the upper-semideviation $\rho(Y) = E(\max\{Y - \mu,0\})$ of an integrable random variable $Y$ with mean $\mu = E(Y)$. $\rho(Y)$ is the risk-aware part of the common mean-upper-semideviation functional $\mu + \lambda \rho(Y)$ with $\lambda \in [0,1]$. To assess more rare and harmful outcomes, we propose an EVT-based estimator for $\rho(Y)$ in a given fraction of the worst cases. We show that our estimator enjoys a closed-form representation in terms of the popular conditional value-at-risk functional. In experiments, we illustrate the extrapolation power of our estimator using a small number of i.i.d. samples ($<$50). Our approach is useful for estimating the risk of finite-time systems when models are inaccessible and data collection is expensive. The numerical complexity does not grow with the size of the state space.


翻译:我们的目标是在更罕见和有害的结果中分析一个没有模型的有限时间随机系统的行为。 标准估计值由于这些结果的罕见性, 无法有效预测这些结果。 相反, 我们使用极值理论(EVT), 即随机变量标准化最大值的长期行为理论(Y) 。 我们用高缩降 $\rho(Y) = E( max ⁇ Y- mu,0 ⁇ ) 来量化风险。 为了评估更罕见和有害的结果, 我们建议使用基于 EVT 的估测器, 以美元为随机随机可变值, 平均$\ mu = E(Y) $。 $\rho(Y) 美元(Y) 是普通平均降值理论(EV) 的一部分 。 使用我们最坏的精确度模型, 我们的功能性变异性数据 显示我们货币变异性变异性变异性模型 。 我们的变异性变异性模型 显示我们货币变异性变异性模型 值 。 我们的变异性变异性模型 显示我们货币变异性变异性变异性变变变变变变变的 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月8日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员