Depending on the interpretation of the type of edges, a chain graph can represent different relations between variables and thereby independence models. Three interpretations, known by the acronyms LWF, MVR, and AMP, are prevalent. Multivariate regression chain graphs (MVR CGs) were introduced by Cox and Wermuth in 1993. We review Markov properties for MVR chain graphs and propose an alternative global and local Markov property for them. Except for pairwise Markov properties, we show that for MVR chain graphs all Markov properties in the literature are equivalent for semi-graphoids. We derive a new factorization formula for MVR chain graphs which is more explicit than and different from the proposed factorizations for MVR chain graphs in the literature. Finally, we provide a summary table comparing different features of LWF, AMP, and MVR chain graphs.


翻译:根据对边缘类型的解释,链条图可以代表不同变量和独立模式之间的不同关系。三种解释(缩略语LWF、MVR和AMP)很普遍。1993年Cox和Wermuth采用了多变量回归链图(MVR CGs ) 。我们为MVR链条图审查了Markov特性,并为这些特性提出了另一种全球和地方的Markov属性。除了对称的Markov特性外,我们显示,对于MVR链条图而言,文献中所有Markov特性都相当于半图类。我们为MVR链图提出了一种新的因子化公式,该公式比文献中MVR链图的拟议因子化法更加明确和不同。最后,我们提供了一份总表,比较LWFF、AMP和MVR链图的不同特征。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
7+阅读 · 2018年3月21日
Top
微信扫码咨询专知VIP会员