Deep neural network (DNN) based salient object detection in images based on high-quality labels is expensive. Alternative unsupervised approaches rely on careful selection of multiple handcrafted saliency methods to generate noisy pseudo-ground-truth labels. In this work, we propose a two-stage mechanism for robust unsupervised object saliency prediction, where the first stage involves refinement of the noisy pseudo labels generated from different handcrafted methods. Each handcrafted method is substituted by a deep network that learns to generate the pseudo labels. These labels are refined incrementally in multiple iterations via our proposed self-supervision technique. In the second stage, the refined labels produced from multiple networks representing multiple saliency methods are used to train the actual saliency detection network. We show that this self-learning procedure outperforms all the existing unsupervised methods over different datasets. Results are even comparable to those of fully-supervised state-of-the-art approaches. The code is available at https://tinyurl.com/wtlhgo3 .
翻译:基于深神经网络(DNN) 基于深神经网络(DNN) 基于基于高质量标签的图像中的显要物体探测费用昂贵。 替代的未经监督的方法依赖于仔细选择多手制作的显要方法来产生噪音的伪地面真象标签。 在这项工作中,我们提议了一个两阶段机制,用于强力、不受监督的物体显要性预测,第一阶段涉及改进由不同手工制作方法产生的噪音假象标签。每种手工制作方法都由一个深网络取代,后者学习生成假标签。这些标签通过我们提议的自我监督技术,在多个迭代中逐步得到精细化。在第二阶段,使用代表多种显要性方法的多个网络产生的精细标签来培训实际的显要性探测网络。我们表明,这种自学程序超越了不同数据集上所有现有的不受监督的方法。结果甚至可以与完全受监督的状态-艺术方法相比较。 代码可在https://tinyurl.com/wtlhgo3上查阅。