Deep neural network (DNN) based salient object detection in images based on high-quality labels is expensive. Alternative unsupervised approaches rely on careful selection of multiple handcrafted saliency methods to generate noisy pseudo-ground-truth labels. In this work, we propose a two-stage mechanism for robust unsupervised object saliency prediction, where the first stage involves refinement of the noisy pseudo labels generated from different handcrafted methods. Each handcrafted method is substituted by a deep network that learns to generate the pseudo labels. These labels are refined incrementally in multiple iterations via our proposed self-supervision technique. In the second stage, the refined labels produced from multiple networks representing multiple saliency methods are used to train the actual saliency detection network. We show that this self-learning procedure outperforms all the existing unsupervised methods over different datasets. Results are even comparable to those of fully-supervised state-of-the-art approaches. The code is available at https://tinyurl.com/wtlhgo3 .


翻译:基于深神经网络(DNN) 基于深神经网络(DNN) 基于基于高质量标签的图像中的显要物体探测费用昂贵。 替代的未经监督的方法依赖于仔细选择多手制作的显要方法来产生噪音的伪地面真象标签。 在这项工作中,我们提议了一个两阶段机制,用于强力、不受监督的物体显要性预测,第一阶段涉及改进由不同手工制作方法产生的噪音假象标签。每种手工制作方法都由一个深网络取代,后者学习生成假标签。这些标签通过我们提议的自我监督技术,在多个迭代中逐步得到精细化。在第二阶段,使用代表多种显要性方法的多个网络产生的精细标签来培训实际的显要性探测网络。我们表明,这种自学程序超越了不同数据集上所有现有的不受监督的方法。结果甚至可以与完全受监督的状态-艺术方法相比较。 代码可在https://tinyurl.com/wtlhgo3上查阅。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员