Quantile regression and partial frontier are two distinct approaches to nonparametric quantile frontier estimation. In this article, we demonstrate that partial frontiers are not quantiles. Both convex and nonconvex technologies are considered. To this end, we propose convexified order-$\alpha$ as an alternative to convex quantile regression (CQR) and convex expectile regression (CER), and two new nonconvex estimators: isotonic CQR and isotonic CER as alternatives to order-$\alpha$. A Monte Carlo study shows that the partial frontier estimators perform relatively poorly and even can violate the quantile property, particularly at low quantiles. In addition, the simulation evidence shows that the indirect expectile approach to estimating quantiles generally outperforms the direct quantile estimations. We further find that the convex estimators outperform their nonconvex counterparts owing to their global shape constraints. An illustration of those estimators is provided using a real-world dataset of U.S. electric power plants.
翻译:量度回归和部分边界是两种不同的非对等量化边界估测方法。 在本条中, 我们证明部分边界不是四分位数。 考虑的是混凝土和非混凝土技术。 为此, 我们提出分解定值- $\ alpha$, 以替代二次曲线定分数回归( CQR) 和混凝土预期回归( CER ), 以及两个新的非convex估测器: 等离子CQR 和 等离子 CER, 以替代 $\ alpha$ 。 蒙特卡洛的一项研究表明, 部分边界估测器的表现相对较差, 甚至可能侵犯四分位数属性, 特别是在低位位数中。 此外, 模拟证据表明, 估计四分数的间接预期方法通常比直接的量估测值( CER ) 。 我们还发现, 等分估器由于其全球形状的限制, 超越了它们不相容的对应方。 这些估测器的示例是使用U. S. 电厂的实时数据集来提供的。