In this paper, we propose conjugate energy-based models (CEBMs), a new class of energy-based models that define a joint density over data and latent variables. The joint density of a CEBM decomposes into an intractable distribution over data and a tractable posterior over latent variables. CEBMs have similar use cases as variational autoencoders, in the sense that they learn an unsupervised mapping from data to latent variables. However, these models omit a generator network, which allows them to learn more flexible notions of similarity between data points. Our experiments demonstrate that conjugate EBMs achieve competitive results in terms of image modelling, predictive power of latent space, and out-of-domain detection on a variety of datasets.
翻译:在本文中,我们提出了以能源为基础的模型(CEBM),这是一种新型的以能源为基础的模型,它界定了数据和潜在变量的共同密度。CEBM的分解密度对数据和潜在变量形成难以解决的分布,对潜在变量具有可移动的后部效应。CEBM也有与变异自动转换器类似的使用案例,即它们学会了从数据到潜在变量的未经监督的绘图。然而,这些模型省略了一个发电机网络,这样它们就可以了解数据点之间相似性的更灵活的概念。我们的实验表明,CEBM在图像建模、潜在空间的预测力和各种数据集的外部探测方面,CEBMs取得了竞争性的结果。