Convex (specifically semidefinite) relaxation provides a powerful approach to constructing robust machine perception systems, enabling the recovery of certifiably globally optimal solutions of challenging estimation problems in many practical settings. However, solving the large-scale semidefinite relaxations underpinning this approach remains a formidable computational challenge. A dominant cost in many state-of-the-art (Burer-Monteiro factorization-based) certifiable estimation methods is solution verification (testing the global optimality of a given candidate solution), which entails computing a minimum eigenpair of a certain symmetric certificate matrix. In this paper, we show how to significantly accelerate this verification step, and thereby the overall speed of certifiable estimation methods. First, we show that the certificate matrices arising in the Burer-Monteiro approach generically possess spectra that make the verification problem expensive to solve using standard iterative eigenvalue methods. We then show how to address this challenge using preconditioned eigensolvers; specifically, we design a specialized solution verification algorithm based upon the locally optimal block preconditioned conjugate gradient (LOBPCG) method together with a simple yet highly effective algebraic preconditioner. Experimental evaluation on a variety of simulated and real-world examples shows that our proposed verification scheme is very effective in practice, accelerating solution verification by up to 280x, and the overall Burer-Monteiro method by up to 16x, versus the standard Lanczos method when applied to relaxations derived from large-scale SLAM benchmarks.
翻译:解密( 具体地说半不完全) 放松为构建稳健的机器感知系统提供了强有力的方法,使得能够恢复在很多实际环境中具有挑战性的估算问题的全球最佳解决办法。然而,解决这一办法背后的大规模半不完全放松仍然是一个巨大的计算挑战。许多最先进( 布鲁尔- 蒙泰罗 系数化) 的验证方法的主要成本是解决方案的核查( 测试特定候选解决方案的全球最佳性), 这需要计算某种对称证书矩阵的最小性精度基准。 在本文中,我们展示了如何大大加快这一核查步骤,从而加快了可验证估算方法的总体速度。 首先,我们展示了布勒- 蒙泰罗 方法中出现的证书矩阵通常拥有光谱,使得使用标准的迭代基因值方法来解决核查问题的成本昂贵。 然后我们展示了如何使用有前提条件的缓冲解决方案来应对这一挑战; 具体地说,我们设计了一个基于地方最优化的精度标准精度测试模型的大型解决方案算法, 也就是从本地最精度梯化的梯度( LABPCG ) 快速地展示了我们所拟的模拟的快速的模拟的模拟模拟的模拟的模拟的模拟模拟的模拟的模拟的模拟方法。