Poisson log-linear models are ubiquitous in many applications, and one of the most popular approaches for parametric count regression. In the Bayesian context, however, there are no sufficient specific computational tools for efficient sampling from the posterior distribution of parameters, and standard algorithms, such as random walk Metropolis-Hastings or Hamiltonian Monte Carlo algorithms, are typically used. Herein, we developed an efficient Metropolis-Hastings algorithm and importance sampler to simulate from the posterior distribution of the parameters of Poisson log-linear models under conditional Gaussian priors with superior performance with respect to the state-of-the-art alternatives. The key for both algorithms is the introduction of a proposal density based on a Gaussian approximation of the posterior distribution of parameters. Specifically, our result leverages the negative binomial approximation of the Poisson likelihood and the successful P\'olya-gamma data augmentation scheme. Via simulation, we obtained that the time per independent sample of the proposed samplers is competitive with that obtained using the successful Hamiltonian Monte Carlo sampling, with the Metropolis-Hastings showing superior performance in all scenarios considered.


翻译:Poisson log- 线性模型在许多应用中普遍存在,也是最受欢迎的参数计数回归方法之一。然而,在巴伊西亚,没有足够具体的计算工具从参数的后座分布中有效取样,而且通常使用标准算法,例如随机步行大都会分布法或汉密尔顿蒙特卡洛算法。在这里,我们开发了高效的大都会- 开发算法和重要取样器,以模拟在条件性高山前台下Poisson log- 线性模型参数的后座分布,在最新替代技术方面表现优异。这两种算法的关键是引入基于参数后座分布高斯近似戈斯的推荐密度。具体地说,我们的结果利用Poisson可能性和成功的P\'olya- gamma数据增强办法的负双波近似近似近似近似值。Via模拟,我们获得的拟议取样员在使用汉密尔顿- 蒙特卡罗斯所有设想的高级模拟方案所取得的竞争力。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员