When engaging in argumentative discourse, skilled human debaters tailor claims to the beliefs of the audience, to construct effective arguments. Recently, the field of computational argumentation witnessed extensive effort to address the automatic generation of arguments. However, existing approaches do not perform any audience-specific adaptation. In this work, we aim to bridge this gap by studying the task of belief-based claim generation: Given a controversial topic and a set of beliefs, generate an argumentative claim tailored to the beliefs. To tackle this task, we model the people's prior beliefs through their stances on controversial topics and extend state-of-the-art text generation models to generate claims conditioned on the beliefs. Our automatic evaluation confirms the ability of our approach to adapt claims to a set of given beliefs. In a manual study, we additionally evaluate the generated claims in terms of informativeness and their likelihood to be uttered by someone with a respective belief. Our results reveal the limitations of modeling users' beliefs based on their stances, but demonstrate the potential of encoding beliefs into argumentative texts, laying the ground for future exploration of audience reach.


翻译:从事辩论性讨论时, 熟练的人类辩论者根据观众的信仰提出主张, 以建立有效的论据。 最近, 计算辩论领域目睹了处理自动产生论据的广泛努力。 但是, 现有办法并不产生任何针对观众的适应性。 在这项工作中, 我们的目标是通过研究基于信仰的主张产生的任务来弥补这一差距: 鉴于一个有争议的议题和一套信仰, 产生与信仰相适应的、 具有争议性的主张。 为了完成这项任务, 我们通过人们对有争议的议题的立场来模拟人们先前的信仰, 并扩大最先进的文本生成模型, 以产生以信仰为条件的主张。 我们的自动评估证实了我们使主张适应一套特定信仰的方法的能力。 在一项手册研究中,我们进一步从信息性的角度来评估所产生的主张, 以及这些主张有可能由具有相关信仰的人发表。 我们的结果揭示了基于其立场的模拟使用者信仰的局限性, 但也展示了将信仰编码成争论性文本的潜力, 为未来探索受众接触的范围打下的基础。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
4+阅读 · 2019年9月26日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
4+阅读 · 2018年5月10日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
4+阅读 · 2019年9月26日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
4+阅读 · 2018年5月10日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
5+阅读 · 2017年11月30日
Top
微信扫码咨询专知VIP会员