In robot localisation and mapping, outliers are unavoidable when loop-closure measurements are taken into account. A single false-positive loop-closure can have a very negative impact on SLAM problems causing an inferior trajectory to be produced or even for the optimisation to fail entirely. To address this issue, popular existing approaches define a hard switch for each loop-closure constraint. This paper presents AEROS, a novel approach to adaptively solve a robust least-squares minimisation problem by adding just a single extra latent parameter. It can be used in the back-end component of the SLAM problem to enable generalised robust cost minimisation by simultaneously estimating the continuous latent parameter along with the set of sensor poses in a single joint optimisation. This leads to a very closely curve fitting on the distribution of the residuals, thereby reducing the effect of outliers. Additionally, we formulate the robust optimisation problem using standard Gaussian factors so that it can be solved by direct application of popular incremental estimation approaches such as iSAM. Experimental results on publicly available synthetic datasets and real LiDAR-SLAM datasets collected from the 2D and 3D LiDAR systems show the competitiveness of our approach with the state-of-the-art techniques and its superiority on real world scenarios.
翻译:在机器人本地化和绘图中,当考虑循环闭合测量时,离值是不可避免的。单一的假阳性循环闭合可能会对 SLAM 问题产生非常消极的影响,导致产生低劣的轨迹,甚至使优化完全失败。为了解决这个问题,流行的现有办法为每个环闭限制定义了硬开关。本文介绍了AEROS, 这是一种适应性解决强势最小度最小度问题的新办法, 仅添加一个额外的隐性参数。 它可用于 SLAM 问题的后端部分, 以便能够同时估计连续潜值参数和传感器组合的单一联合优化, 从而实现普遍化的稳健成本最小化。 这导致一个非常接近于剩余值分布的曲线, 从而减小了外部值的影响。 此外, 我们使用标准高斯系数来制定稳健的选合问题, 以便通过直接应用像 iSAM 这样的流行增量估计方法来解决它。 在公开提供的合成数据集和真实的LIDAR- SLAM-SAM 方法上, 实验结果, 展示了我们从全球收集的2D 级技术的LID- Restalal-D 方法, 展示了它的全球竞争力。