Federated Learning (FL) is a promising decentralized learning framework and has great potentials in privacy preservation and in lowering the computation load at the cloud. Recent work showed that FedAvg and FedProx - the two widely-adopted FL algorithms - fail to reach the stationary points of the global optimization objective even for homogeneous linear regression problems. Further, it is concerned that the common model learned might not generalize well locally at all in the presence of heterogeneity. In this paper, we analyze the convergence and statistical efficiency of FedAvg and FedProx, addressing the above two concerns. Our analysis is based on the standard non-parametric regression in a reproducing kernel Hilbert space (RKHS), and allows for heterogeneous local data distributions and unbalanced local datasets. We prove that the estimation errors, measured in either the empirical norm or the RKHS norm, decay with a rate of 1/t in general and exponentially for finite-rank kernels. In certain heterogeneous settings, these upper bounds also imply that both FedAvg and FedProx achieve the optimal error rate. To further analytically quantify the impact of the heterogeneity at each client, we propose and characterize a novel notion-federation gain, defined as the reduction of the estimation error for a client to join the FL. We discover that when the data heterogeneity is moderate, a client with limited local data can benefit from a common model with a large federation gain. Numerical experiments further corroborate our theoretical findings.


翻译:联邦学习联合会(FL)是一个很有希望的分散学习框架,在保护隐私和降低云层计算负荷方面有着巨大的潜力。最近的工作表明,FedAvg和FedProx(两种广泛采用的FL算法)即使针对同质线性回归问题,也未能达到全球优化目标的固定点。此外,我们担心,在存在异质性的情况下,所学的共同模型可能无法在当地全面普及。在本文中,我们分析FedAvg和FedProx的趋同和统计效率,以解决上述两个问题。我们的分析基于在再生的Hilbert空间(RKHS)中的标准非参数回归,并允许混杂的地方数据分布和不平衡的地方数据集。我们证明,无论是在经验规范还是RKHSHS标准中衡量的误差,在存在差异性骨质骨质骨质关系的情况下,均以1/t和指数性的速度衰减。在某些中,这些上界限还意味着FedAvg和FPProx都能达到最佳的误率率率。我们通过分析方式对客户进行量化的精确度分析,从而量化了我们客户的肝错算。我们定义的客户的直判。我们定义的直判的客户的客户的数值,我们定义的直判值的直判。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
19+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员