Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract spatio-temporal coherent structures that dictate a given dynamical system. The method consists of stacking collected temporal snapshots into a matrix and mapping the nonlinear dynamics using a linear operator. The standard procedure considers that snapshots possess the same dimensionality for all the observable data. However, this often does not occur in numerical simulations with adaptive mesh refinement/coarsening schemes (AMR/C). This paper proposes a strategy to enable DMD to extract features from observations with different mesh topologies and dimensions, such as those found in AMR/C simulations. For this purpose, the adaptive snapshots are projected onto the same reference function space, enabling the use of snapshot-based methods such as DMD. The present strategy is applied to challenging AMR/C simulations: a continuous diffusion-reaction epidemiological model for COVID-19, a density-driven gravity current simulation, and a bubble rising problem. We also evaluate the DMD efficiency to reconstruct the dynamics and some relevant quantities of interest. In particular, for the SEIRD model and the bubble rising problem, we evaluate DMD's ability to extrapolate in time (short-time future estimates).
翻译:动态模式分解(DMD)是一种强大的数据驱动方法,用于提取具有特定动态系统的时空一致性结构。这种方法包括将收集的时光速片堆积到矩阵中,并用线性操作员绘制非线性动态图。标准程序认为,所有可观测数据都具有相同的维度。然而,这通常不是在采用适应性网状改进/粗略计划(AMR/C)进行的数字模拟中发生的。本文提出了一个战略,使DMD能够从具有不同网状表层和层面的观测中提取特征,如在AMR/C模拟中发现的情况。为此,适应性快照被投放到同一个参考功能空间,从而能够使用DMD等基于快照的方法。本战略用于挑战性AMR/C模拟:COVID-19的连续扩散-反应流行病学模型、密度驱动重力当前模拟和泡沫上升的问题。我们还评估DMD的效率,以重建动态和某些相关的兴趣量。特别是SEIRMD模型和未来泡沫上升的能力。我们评估S-HORMD。