We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd $\beta$-cycle inequalities valid for this polytope, showed that these generally have Chv\'atal rank 2 with respect to the standard relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle hypergraph instances. Moreover, they describe a separation algorithm in case the instance is a cycle hypergraph. We introduce a weaker version, called simple odd $\beta$-cycle inequalities, for which we establish a strongly polynomial-time separation algorithm for arbitrary instances. These inequalities still have Chv\'atal rank 2 in general and still suffice to describe the multilinear polytope for cycle hypergraphs.
翻译:我们认为,多线性聚苯乙烯在二元多边优化中自然产生。 Del Pia 和 Di Gregorio 引入了适用于这一多元型的奇数 $\ beeta$- 周期不平等类别, 表明这些类别在标准放松方面一般具有Cv\'at级 2级, 与花朵不平等一道,它们为周期高光度实例提供了完美的配方。 此外, 它们描述的是该例中的一种分离算法, 情况是循环高光度。 我们引入了一种较弱的版本, 叫做简单的奇数 $\beta$- 周期不平等, 我们为此为任意事件制定了一种强烈的多线性分时间算法。 这些不平等总体上仍具有Cv\'at级 2级, 仍然足以描述周期高光度的多线性多光谱 。