Spontaneous speech emotion data usually contain perceptual grades where graders assign emotion score after listening to the speech files. Such perceptual grades introduce uncertainty in labels due to grader opinion variation. Grader variation is addressed by using consensus grades as groundtruth, where the emotion with the highest vote is selected. Consensus grades fail to consider ambiguous instances where a speech sample may contain multiple emotions, as captured through grader opinion uncertainty. We demonstrate that using the probability density function of the emotion grades as targets instead of the commonly used consensus grades, provide better performance on benchmark evaluation sets compared to results reported in the literature. We show that a saliency driven foundation model (FM) representation selection helps to train a state-of-the-art speech emotion model for both dimensional and categorical emotion recognition. Comparing representations obtained from different FMs, we observed that focusing on overall test-set performance can be deceiving, as it fails to reveal the models generalization capacity across speakers and gender. We demonstrate that performance evaluation across multiple test-sets and performance analysis across gender and speakers are useful in assessing usefulness of emotion models. Finally, we demonstrate that label uncertainty and data-skew pose a challenge to model evaluation, where instead of using the best hypothesis, it is useful to consider the 2- or 3-best hypotheses.
翻译:暂无翻译