We try to clarify the relationship between Kleene algebra and process algebra, based on the very recent work on Kleene algebra and process algebra. Both for concurrent Kleene algebra (CKA) with communications and truly concurrent process algebra APTC with Kleene star and parallel star, the extended Milner's expansion law $a\parallel b=a\cdot b+b\cdot a+a\parallel b +a\mid b$ holds, with $a,b$ being primitives (atomic actions), $\parallel$ being the parallel composition, $+$ being the alternative composition, $\cdot$ being the sequential composition and the communication merge $\mid$ with the background of computation. CKA and APTC are all the truly concurrent computation models, can have the same syntax (primitives and operators), maybe have the same or different semantics.
翻译:我们尝试在基于最近关于Kleene代数和进程代数的工作的基础上澄清Kleene代数和进程代数之间的关系。对于具有通信功能的并发Kleene代数(CKA)和具有Kleene星号和并行星号的真正并发进程代数(APTC),扩展的Milner的展开律$a\parallel b=a\cdot b+b\cdot a+a\parallel b +a\mid b$成立,其中$a,b$为原语(原子动作),$\parallel$为并行组合,$+$为备选组合,$\cdot$为顺序组合,而$\mid$代表通信合并。CKA和APTC都是真正的并发计算模型,可以具有相同的语法(原语和运算符),也可以具有相同或不同的语义。