Autonomous agents are able to draw on a wide variety of potential sources of task knowledge; however current approaches invariably focus on only one or two. Here we investigate the challenges and impact of exploiting diverse knowledge sources to learn online, in one-shot, new tasks for a simulated office mobile robot. The resulting agent, developed in the Soar cognitive architecture, uses the following sources of domain and task knowledge: interaction with the environment, task execution and search knowledge, human natural language instruction, and responses retrieved from a large language model (GPT-3). We explore the distinct contributions of these knowledge sources and evaluate the performance of different combinations in terms of learning correct task knowledge and human workload. Results show that an agent's online integration of diverse knowledge sources improves one-shot task learning overall, reducing human feedback needed for rapid and reliable task learning.
翻译:自主代理商能够利用各种各样的潜在任务知识来源;但目前的做法总是只注重一两个。在这里,我们调查利用各种知识来源在网上学习,用一张照片了解模拟办公室移动机器人的新任务的挑战和影响。由此产生的代理商在远方认知结构中开发,使用以下领域和任务知识来源:与环境的互动、任务执行和搜索知识、人类自然语言教学以及从大型语言模式(GPT-3)中检索到的答复。我们探讨这些知识来源的独特贡献,并评估不同组合在学习正确任务知识和人的工作量方面的表现。结果显示,一个代理商在网上整合各种知识来源可以改善一手任务的总体学习,减少快速和可靠任务学习所需的人类反馈。