We present a Fourier neural network (FNN) that can be mapped directly to the Fourier decomposition. The choice of activation and loss function yields results that replicate a Fourier series expansion closely while preserving a straightforward architecture with a single hidden layer. The simplicity of this network architecture facilitates the integration with any other higher-complexity networks, at a data pre- or postprocessing stage. We validate this FNN on naturally periodic smooth functions and on piecewise continuous periodic functions. We showcase the use of this FNN for modeling or solving partial differential equations with periodic boundary conditions. The main advantages of the current approach are the validity of the solution outside the training region, interpretability of the trained model, and simplicity of use.
翻译:我们提出了一个可直接与 Fourier 分解法相映射的 Fourier 神经网络(FNN) 。 激活和损失函数的选择产生结果, 复制一个 Fourier 序列扩展, 并同时保持一个单一隐藏层的直截了当的结构。 这个网络结构的简单性有利于在数据处理前或处理后阶段与任何其他更高复杂网络的整合。 我们用自然周期顺畅的功能和小巧连续的周期功能验证这个 FN 。 我们展示了这个 FNN 用于模拟或解决带有定期边界条件的局部差异方程式。 目前方法的主要优点是培训区外解决方案的有效性、 训练有素模型的可解释性以及使用简单性。