In this work, we have proposed augmented KRnets including both discrete and continuous models. One difficulty in flow-based generative modeling is to maintain the invertibility of the transport map, which is often a trade-off between effectiveness and robustness. The exact invertibility has been achieved in the real NVP using a specific pattern to exchange information between two separated groups of dimensions. KRnet has been developed to enhance the information exchange among data dimensions by incorporating the Knothe-Rosenblatt rearrangement into the structure of the transport map. Due to the maintenance of exact invertibility, a full nonlinear update of all data dimensions needs three iterations in KRnet. To alleviate this issue, we will add augmented dimensions that act as a channel for communications among the data dimensions. In the augmented KRnet, a fully nonlinear update is achieved in two iterations. We also show that the augmented KRnet can be reformulated as the discretization of a neural ODE, where the exact invertibility is kept such that the adjoint method can be formulated with respect to the discretized ODE to obtain the exact gradient. Numerical experiments have been implemented to demonstrate the effectiveness of our models.


翻译:在这项工作中,我们建议扩大KRnet, 包括离散和连续模型。 流基基因模型的一个困难是保持运输图的可视性,这往往是有效性和稳健性之间的权衡。 在实际的NVP中,确实的可视性已经实现,使用了一种特定的模式在两个分离的维度之间交换信息。 KRnet已经开发,目的是通过将Knothe-Rosenblat重新排列纳入运输图的结构,加强数据之间的信息交流。由于精确的可视性,所有数据维度的全面非线性更新需要KRnet的三个迭代。为了缓解这一问题,我们将增加作为数据维度之间沟通渠道的扩大维度。 在扩大的KRnet中,在两个相位数中实现了完全非线性更新。 我们还表明,扩大的KRnet可以重新改编为神经内分解,在那里保持精确的可视性,从而可以制定与我们离散的 ODE 模型相连接的方法,以显示我们已执行的精确梯度试验。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
1+阅读 · 2021年8月18日
Arxiv
4+阅读 · 2018年11月6日
VIP会员
相关VIP内容
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员