In this article, we prove a Feynman-Kac type result for a broad class of second order ordinary differential equations. The classical Feynman-Kac theorem says that the solution to a broad class of second order parabolic equation is the mean of a particular diffusion. In our situation, we show that the solution to a system of second order ordinary differential equations is the mode of a diffusion, defined through the Onsager-Machlup formalism. One potential utility of our result is to use Monte Carlo type methods to estimate the solutions of ordinary differential equations. We conclude with examples of our result illustrating its utility in numerically solving linear second order ODEs.
翻译:在本篇文章中,我们证明Feynman-Kac类型的结果是一大类二等普通差分方程式。古典的Feynman-Kac论者认为,二等抛物线的宽类二等方程式的解决方案是特定扩散的平均值。在我们的情况中,我们证明二等普通差分方程式的解决方案是通过Onsager-Machlup形式主义定义的传播模式。我们结果的一个潜在用途是使用Monte Carlo类型方法来估计普通差分方程式的解决方案。我们最后以实例来说明我们在数字解决线性第二等分法中的实用性。