This work proposes a hyper-reduction method for nonlinear parametric dynamical systems characterized by gradient fields such as (port-)Hamiltonian systems and gradient flows. The gradient structure is associated with conservation of invariants or with dissipation and hence plays a crucial role in the description of the physical properties of the system. Traditional hyper-reduction of nonlinear gradient fields yields efficient approximations that, however, lack the gradient structure. We focus on Hamiltonian gradients and we propose to first decompose the nonlinear part of the Hamiltonian, mapped into a suitable reduced space, into the sum of d terms, each characterized by a sparse dependence on the system state. Then, the hyper-reduced approximation is obtained via discrete empirical interpolation (DEIM) of the Jacobian of the derived d-valued nonlinear function. The resulting hyper-reduced model retains the gradient structure and its computationally complexity is independent of the size of the full model. Moreover, a priori error estimates show that the hyper-reduced model converges to the reduced model and the Hamiltonian is asymptotically preserved. Whenever the nonlinear Hamiltonian gradient is not globally reducible, i.e. its evolution requires high-dimensional DEIM approximation spaces, an adaptive strategy is performed. This consists in updating the hyper-reduced Hamiltonian via a low-rank correction of the DEIM basis. Numerical tests demonstrate the applicability of the proposed approach to general nonlinear operators and runtime speedups compared to the full and the reduced models.


翻译:这项工作为非线性参数动态系统提出了一种高降法, 其特点是( 港- 港) Hamilton 系统和梯度流等梯度字段。 梯度结构与变量保护或分散有关, 因此在描述系统物理属性方面发挥着关键作用。 非线性梯度字段的传统超降法产生高效近似值, 但缺乏梯度结构 。 我们侧重于汉密尔顿梯度, 并提议首先将汉密尔顿梯度的非线性部分分解为适当的减幅空间, 以对系统状态的依赖程度为总和, 每一个值都以对系统状态的依赖度为特征。 然后, 高降的近似近似通过衍生非线性I( DEIM) 实证间推法( DEIM) 获得, 由此产生的超线性梯度模型保留了梯度结构及其计算的复杂性, 与整个模型的大小无关。 此外, 预先的误判法显示, 超线模型与降型模型相融合, 汉密尔顿型模型作为对系统状态的适量性总可达性值, 。 当不通过不进行 IM 高级的升级 测试时, 将 向 进行 的 水平 的 。 的 水平 的 的 的 的 的 的 的 的 的 的 的 的 的 的 水平 的 的 的 的 的 水平 的 的 的 的 的 的 的 将 向 向 向 向 向 向 向 向 向 向 向 向 向 的 的 的 的 的 进行 进行 进行 进行 的 进行 进行 进行 的 的 的 的 的 进行 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员