In this work we introduce an interactive variant of joint differential privacy towards handling online processes in which existing privacy definitions seem too restrictive. We study basic properties of this definition and demonstrate that it satisfies (suitable variants) of group privacy, composition, and post processing. We then study the cost of interactive joint privacy in the basic setting of online classification. We show that any (possibly non-private) learning rule can be effectively transformed to a private learning rule with only a polynomial overhead in the mistake bound. This demonstrates a stark difference with more restrictive notions of privacy such as the one studied by Golowich and Livni (2021), where only a double exponential overhead on the mistake bound is known (via an information theoretic upper bound).
翻译:在这项工作中,我们为处理现有隐私定义似乎限制性过强的在线程序引入了共同不同隐私的互动变体;我们研究了该定义的基本特性,并表明它满足了群体隐私、组成和后处理的(适合的变体)群体隐私、组成和后处理。然后我们研究了在线分类基本设置中互动共同隐私的成本。我们表明,任何(可能非私人的)学习规则都可以有效地转化为私人学习规则,只有多额间接费才能被错误约束。这与Golovich和Livni(2021年)研究的更具限制性的隐私概念有明显不同,因为Golovich和Livni(2021年)研究的隐私概念只知道一个错误约束上的双倍指数间接费(通过信息理论上限) 。</s>