Text-conditioned image editing has recently attracted considerable interest. However, most methods are currently either limited to specific editing types (e.g., object overlay, style transfer), or apply to synthetically generated images, or require multiple input images of a common object. In this paper we demonstrate, for the very first time, the ability to apply complex (e.g., non-rigid) text-guided semantic edits to a single real image. For example, we can change the posture and composition of one or multiple objects inside an image, while preserving its original characteristics. Our method can make a standing dog sit down or jump, cause a bird to spread its wings, etc. -- each within its single high-resolution natural image provided by the user. Contrary to previous work, our proposed method requires only a single input image and a target text (the desired edit). It operates on real images, and does not require any additional inputs (such as image masks or additional views of the object). Our method, which we call "Imagic", leverages a pre-trained text-to-image diffusion model for this task. It produces a text embedding that aligns with both the input image and the target text, while fine-tuning the diffusion model to capture the image-specific appearance. We demonstrate the quality and versatility of our method on numerous inputs from various domains, showcasing a plethora of high quality complex semantic image edits, all within a single unified framework.
翻译:摘要: 基于文本的图像编辑近来吸引了相当多的关注。然而,目前大多数方法要么只限于特定的编辑类型(如物体叠加、样式转移),要么只适用于合成生成的图像,要么需要多个共同物体的输入图像。在本文中,我们首次展示了能够将复杂的(例如,非刚性的)文本引导的语义编辑应用于单个真实图像的能力。例如,我们可以在保留其原始特征的情况下改变图像内一个或多个物体的姿势和构图。我们的方法可以使站着的狗坐下或跳跃,使鸟张开翅膀等等,每个改变都在用户提供的单个高分辨率自然图像上进行。与先前的工作相反,我们的所提出的方法仅需要单个输入图像和目标文本(所需编辑)。它可应用于真实图像,并不需要任何其他输入(例如图像掩膜或物体的其他视图)。我们的方法称为“Imagic”,利用预训练的文本到图像扩散模型进行此任务。它生成与输入图像和目标文本都对齐的文本嵌入,同时微调扩散模型以捕捉图像特定的外观。我们展示了我们的方法在各个领域的众多输入上的质量和多样性,展示了众多高质量的复杂语义图像编辑,全部在单个统一的框架内实现。