We perform a posteriori error analysis in the supremum norm for the quadratic discontinuous Galerkin method for the elliptic obstacle problem. We define two discrete sets (motivated by Gaddam, Gudi and Kamana [1]), one set having integral constraints and other one with the nodal constraints at the quadrature points, and discuss the pointwise reliability and efficiency of the proposed a posteriori error estimator. In the analysis, we employ a linear averaging function to transfer DG finite element space to standard conforming finite element space and exploit the sharp bounds on the Green's function of the Poisson's problem. Moreover, the upper and the lower barrier functions corresponding to continuous solution u are constructed by modifying the conforming part of the discrete solution uh appropriately. Finally, numerical experiments are presented to complement the theoretical results.
翻译:我们用二次不连续加列金方法对椭圆障碍问题进行后端错误规范分析。 我们定义了两套离散装置(由Gaddam、Gudi和Kamana[1]驱动),一套具有整体制约,另一套具有二次点的节点限制,并讨论了拟议后端误差估计器的点性可靠性和效率。在分析中,我们使用线性平均功能将DG有限元素空间转移到符合限定元素空间的标准,并利用Poisson问题对Green功能的锐度。此外,与持续解决方案U相对应的上方和下方屏障功能是通过适当修改离散解决方案的符合部分来构建的。最后,我们用数字实验来补充理论结果。