The accelerated advancements in the data science field in the last few decades has benefitted many other fields including Structural Health Monitoring (SHM). Particularly, the employment of Artificial Intelligence (AI) such as Machine Learning (ML) and Deep Learning (DL) methods towards vibration-based damage diagnostics of civil structures have seen a great interest due to their nature of supreme performance in learning from data. Along with diagnostics, damage prognostics also hold a vital prominence, such as estimating the remaining useful life of civil structures. Currently used AI-based data-driven methods for damage diagnostics and prognostics are centered on historical data of the structures and require a substantial amount of data to directly form the prediction models. Although some of these methods are generative-based models, after learning the distribution of the data, they are used to perform ML or DL tasks such as classification, regression, clustering, etc. In this study, a variant of Generative Adversarial Networks (GAN), Cycle-Consistent Wasserstein Deep Convolutional GAN with Gradient Penalty (CycleWDCGAN-GP) model is used to answer some of the most important questions in SHM: "How does the dynamic signature of a structure transition from undamaged to damaged conditions?" and "What is the nature of such transition?". The outcomes of this study demonstrate that the proposed model can accurately generate the possible future responses of a structure for potential future damaged conditions. In other words, with the proposed methodology, the stakeholders will be able to understand the damaged condition of structures while the structures are still in healthy (undamaged) conditions. This tool will enable them to be more proactive in overseeing the life cycle performance of structures as well as assist in remaining useful life predictions.


翻译:在过去几十年中,数据科学领域的加速进步使包括结构健康监测(SHM)在内的许多其他领域受益匪浅。 特别是,人工智能(AI)方法,如机器学习(ML)和深学习(DL)等,用于民用结构的震动破坏诊断方法,由于其在从数据中学习的最高性能性质,对民用结构的加速进步产生了极大的兴趣。与诊断一样,损害预测也具有重要的显著意义,例如估计民用结构的剩余有用寿命。目前使用基于AI的数据驱动的损害诊断和预测方法,以结构的历史数据为中心,需要大量的数据直接形成预测模型。虽然这些方法中有些是基于基因的模型,但在数据传播后,它们被用于执行ML或DL任务,如分类、回归、集聚等。 在这项研究中,“Genemental Aversarial 网络(GAN)的变异(GAN),周期-Cassisten Developal GAN 和GArent Referal EN (CEQ) 仍然以历史数据为核心数据为中心,需要大量数据? 数据来直接形成预测模型。“ ” 数据?虽然这些方法是基于基因结构的基因结构的基因结构的基因结构的变异变变变变,但这种结构的变变变,但的变变变变的模型的模型的变变变变变变则在SHMA-GGPIGPA 将使用这种变的模型的模型的模型将用来在SMA的模型是“这种变,但这种变的模型的变的变的变的变的变的变的变,在这种变的模型将使得的变的变法,在SDRTrmaxyalmax。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年9月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年9月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员