Stochastic approximation (SA) algorithms are widely used in system optimization problems when only noisy measurements of the system are available. This paper studies two types of SA algorithms in a multivariate Kiefer-Wolfowitz setting: random-direction SA (RDSA) and simultaneous-perturbation SA (SPSA), and then describes the bias term, convergence, and asymptotic normality of RDSA algorithms. The gradient estimations in RDSA and SPSA have different forms and, consequently, use different types of random perturbations. This paper looks at various valid distributions for perturbations in RDSA and SPSA and then compares the two algorithms using mean-square errors computed from asymptotic distribution. From both a theoretical and numerical point of view, we find that SPSA generally outperforms RDSA.


翻译:在系统优化问题中,只有对系统进行吵闹的测量,才广泛使用沙粒近似算法(SA),本文研究多种变式基费尔-沃福威茨设置的两种SA算法:随机方向SA(RDSA)和同时扰动SA(SPSA),然后描述RDSA算法的偏差术语、趋同和无症状常态。RDSA和SPSA的梯度估计有不同的形式,因此使用不同类型的随机扰动。本文考察了RDSA和SPSA中各种有效的扰动分布,然后比较了使用从无症状分布中计算出的平均平方差差的两种算法。从理论和数字的角度来看,我们发现SPSA一般都比RDSA高。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
6+阅读 · 2019年9月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员