The Metropolis process (MP) and Simulated Annealing (SA) are stochastic local search heuristics that are often used in solving combinatorial optimization problems. Despite significant interest, there are very few theoretical results regarding the quality of approximation obtained by MP and SA (with polynomially many iterations) for NP-hard optimization problems. We provide rigorous lower bounds for MP and SA with respect to the classical maximum independent set problem when the algorithms are initialized from the empty set. We establish the existence of a family of graphs for which both MP and SA fail to find approximate solutions in polynomial time. More specifically, we show that for any $\varepsilon \in (0,1)$ there are $n$-vertex graphs for which the probability SA (when limited to polynomially many iterations) will approximate the optimal solution within ratio $\Omega\left(\frac{1}{n^{1-\varepsilon}}\right)$ is exponentially small. Our lower bounds extend to graphs of constant average degree $d$, illustrating the failure of MP to achieve an approximation ratio of $\Omega\left(\frac{\log (d)}{d}\right)$ in polynomial time. In some cases, our impossibility results also go beyond Simulated Annealing and apply even when the temperature is chosen adaptively. Finally, we prove time lower bounds when the inputs to these algorithms are bipartite graphs, and even trees, which are known to admit polynomial-time algorithms for the independent set problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员