We analyze Riemannian Hamiltonian Monte Carlo (RHMC) for sampling a polytope defined by $m$ inequalities in $\R^n$ endowed with the metric defined by the Hessian of a convex barrier function. The advantage of RHMC over Euclidean methods such as the ball walk, hit-and-run and the Dikin walk is in its ability to take longer steps. However, in all previous work, the mixing rate has a linear dependence on the number of inequalities. We introduce a hybrid of the Lewis weights barrier and the standard logarithmic barrier and prove that the mixing rate for the corresponding RHMC is bounded by $\tilde O(m^{1/3}n^{4/3})$, improving on the previous best bound of $\tilde O(mn^{2/3})$ (based on the log barrier). This continues the general parallels between optimization and sampling, with the latter typically leading to new tools and more refined analysis. To prove our main results, we have to overcomes several challenges relating to the smoothness of Hamiltonian curves and the self-concordance properties of the barrier. In the process, we give a general framework for the analysis of Markov chains on Riemannian manifolds, derive new smoothness bounds on Hamiltonian curves, a central topic of comparison geometry, and extend self-concordance to the infinity norm, which gives sharper bounds; these properties appear to be of independent interest.


翻译:我们研究了在具有凸壁函数定义的$m$个不等式的多面体中采样的Riemannian Hamiltonian Monte Carlo(RHMC)方法。RHMC相对于球行走、hit-and-run和Dikin行走等欧几里得方法的优势在于它可以采取更长的步骤。然而,在所有以前的工作中,混合速率都与不等式数量呈线性关系。我们介绍了Lewis权重壁障和标准对数壁障的混合,并证明了相应RHMC的混合速率受到$\tilde O(m^{1/3}n^{4/3})$的约束,该约束优于以前的最佳约束$\tilde O(mn^{2/3})$(基于log壁障)。这继续了优化和采样之间的相似之处,后者通常会导致新的工具和更精细的分析。为了证明我们的主要结果,我们必须克服关于Hamiltonian曲线的平滑性和壁障的自共轭特性的几个挑战。在此过程中,我们提供了一个关于Riemannian流形上马尔可夫链分析的一般框架,导出了Hamiltonian曲线的新的平滑度界限(比较几何的中心话题),并将自共轭扩展到无穷范数,从而给出了更尖锐的界限;这些性质似乎具有独立的兴趣。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
专知会员服务
63+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
专知会员服务
63+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员