$ \newcommand{\epsA}{\Mh{\delta}} \newcommand{\Re}{\mathbb{R}} \newcommand{\reals}{\mathbb{R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\diam}{\Delta} \newcommand{\Mh}[1]{#1} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} \newcommand{\polylog}{\mathrm{polylog}} \newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\pt}{p} \newcommand{\distY}[2]{\left\| {#1} - {#2} \right\|} \newcommand{\PP}{P} \newcommand{\ptq}{q} \newcommand{\pts}{s}$ Given a set $\PP \subset \Re^d$ of $n$ points, with diameter $\diam$, and a parameter $\epsA \in (0,1)$, it is known that there is a partition of $\PP$ into sets $\PP_1, \ldots, \PP_t$, each of size $O(1/\epsA^2)$, such that their convex-hulls all intersect a common ball of radius $\epsA \diam$. We prove that a random partition, with a simple alteration step, yields the desired partition, resulting in a linear time algorithm. Previous proofs were either existential (i.e., at least exponential time), or required much bigger sets. In addition, the algorithm and its proof of correctness are significantly simpler than previous work, and the constants are slightly better. In addition, we provide a linear time algorithm for computing a ``fuzzy'' centerpoint. We also prove a no-dimensional weak $\eps$-net theorem with an improved constant.
翻译:暂无翻译