Most of the existing isolated sound event datasets comprise a small number of sound event classes, usually 10 to 15, restricted to a small domain, such as domestic and urban sound events. In this work, we introduce GISE-51, a dataset spanning 51 isolated sound events belonging to a broad domain of event types. We also release GISE-51-Mixtures, a dataset of 5-second soundscapes with hard-labelled event boundaries synthesized from GISE-51 isolated sound events. We conduct baseline sound event recognition (SER) experiments on the GISE-51-Mixtures dataset, benchmarking prominent convolutional neural networks, and models trained with the dataset demonstrate strong transfer learning performance on existing audio recognition benchmarks. Together, GISE-51 and GISE-51-Mixtures attempt to address some of the shortcomings of recent sound event datasets, providing an open, reproducible benchmark for future research along with the freedom to adapt the included isolated sound events for domain-specific applications.


翻译:现有大多数孤立的音频事件数据集包括少量的音频活动类别,通常为10至15个,仅限于小领域,如国内和城市的音频活动。在这项工作中,我们引入了GISE-51数据集,该数据集涵盖属于事件类型广泛领域的51个孤立的音频事件。我们还发布GISE-51-Mixtures数据集,该数据集由5秒的音频场组成,由GISE-51孤立的音频事件组成。我们开展了关于GISE-51-Mixtures数据集的基线音频活动识别实验,对显著的动态神经网络进行基准基准测试,以及受数据集培训的模型,展示了在现有音频识别基准上的强有力的传输学习表现。GISE-51和GISE-51-Mixulations共同试图解决最近音频事件数据集的一些缺陷,为今后的研究提供了一个开放和可复制的基准,同时允许将包括孤立的音频活动应用于特定领域的应用。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
专知会员服务
79+阅读 · 2021年5月4日
【经典书】线性代数,399页pdf,Georgi Shilov经典本科教材
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【资源】15个在线机器学习课程和教程
专知
8+阅读 · 2017年12月22日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年5月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【资源】15个在线机器学习课程和教程
专知
8+阅读 · 2017年12月22日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员