Estimating a fair linear regression model subject to a user-defined level of fairness can be achieved by solving a non-convex quadratic programming optimisation problem with quadratic constraints. In this work we propose an alternative, more flexible approach to this task that enforces a user-defined level of fairness by means of a ridge penalty. Our proposal addresses three limitations of the former approach: it produces regression coefficient estimates that are more intuitive to interpret; it is mathematically simpler, with a solution that is partly in closed form; and it is easier to extend beyond linear regression. We evaluate both approaches empirically on five different data sets, and we find that our proposal provides better goodness of fit and better predictive accuracy while being equally effective at achieving the desired fairness level. In addition we highlight a source of bias in the original experimental evaluation of the non-convex quadratic approach, and we discuss how our proposal can be extended to a wide range of models.


翻译:在这项工作中,我们建议了另一种更灵活的方法来完成这项任务,通过山脊罚款来强制实施用户确定的公平程度。我们的提案涉及前一种方法的三个局限性:它产生回归系数估计数,更直观地解释;它数学上比较简单,解决办法部分是封闭式的;更容易扩大范围,超越线性回归。我们对五套不同的数据集的经验性评估,我们发现我们的提案提供了更合适、更准确的预测性,同时对达到理想的公平水平同样有效。此外,我们还强调了最初对非convex二次曲线法进行实验性评估时的偏差来源,我们讨论了如何将我们的提案推广到广泛的模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员