While advertising has become commonplace in today's online interactions, there is a notable dearth of research investigating the extent to which browser fingerprinting is harnessed for user tracking and targeted advertising. Prior studies only measured whether fingerprinting-related scripts are being run on the websites but that in itself does not necessarily mean that fingerprinting is being used for the privacy-invasive purpose of online tracking because fingerprinting might be deployed for the defensive purposes of bot/fraud detection and user authentication. It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising. To understand the privacy-invasive use of fingerprinting for user tracking, this paper introduces a new framework ``FPTrace'' (fingerprinting-based tracking assessment and comprehensive evaluation framework) designed to identify alterations in advertisements resulting from adjustments in browser fingerprinting settings. Our approach involves emulating genuine user interactions, capturing advertiser bid data, and closely monitoring HTTP information. Using FPTrace we conduct a large-scale measurement study to identify whether browser fingerprinting is being used for the purpose of user tracking and ad targeting. The results we have obtained provide robust evidence supporting the utilization of browser fingerprinting for the purposes of advertisement tracking and targeting. This is substantiated by significant disparities in bid values and a reduction in HTTP records subsequent to changes in fingerprinting. In conclusion, our research unveils the widespread employment of browser fingerprinting in online advertising, prompting critical considerations regarding user privacy and data security within the digital advertising landscape.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员