We present a detailed study of estimation errors in terms of surrogate loss estimation errors. We refer to such guarantees as $\mathscr{H}$-consistency estimation error bounds, since they account for the hypothesis set $\mathscr{H}$ adopted. These guarantees are significantly stronger than $\mathscr{H}$-calibration or $\mathscr{H}$-consistency. They are also more informative than similar excess error bounds derived in the literature, when $\mathscr{H}$ is the family of all measurable functions. We prove general theorems providing such guarantees, for both the distribution-dependent and distribution-independent settings. We show that our bounds are tight, modulo a convexity assumption. We also show that previous excess error bounds can be recovered as special cases of our general results. We then present a series of explicit bounds in the case of the zero-one loss, with multiple choices of the surrogate loss and for both the family of linear functions and neural networks with one hidden-layer. We further prove more favorable distribution-dependent guarantees in that case. We also present a series of explicit bounds in the case of the adversarial loss, with surrogate losses based on the supremum of the $\rho$-margin, hinge or sigmoid loss and for the same two general hypothesis sets. Here too, we prove several enhancements of these guarantees under natural distributional assumptions. Finally, we report the results of simulations illustrating our bounds and their tightness.


翻译:我们详细研究了代用损失估计错误的估计错误。 我们指的是 $\ mathscr{H} 美元 的一致估计错误界限等保证, 因为这些保证说明采用的假设值为$mathscr{H} 美元。 这些保证比 $mathscr{H} 美元校正或$\ mathcr{H} 美元 的一致性要强得多。 这些保证比文献中出现的类似过错界限要多得多。 当 $\ mathscr{H} 美元是所有可测量功能的家族时, 我们指的是提供这种保证的通用理论值, 因为这些保证值是依赖分配和依赖分配的假设值。 我们还表明, 以前的过错界限可以作为我们总体结果的特殊案例得到恢复。 然后, 在零一损失的情况下, 我们提出了一系列明确的界限, 以及线性功能和内线性网络的组合, 证明它们以一个隐藏的和内值为主的精确性保证值。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员