A partial orientation $\vec{H}$ of a graph $G$ is a weak $r$-guidance system if for any two vertices at distance at most $r$ in $G$, there exists a shortest path $P$ between them such that $\vec{H}$ directs all but one edge in $P$ towards this edge. In case $\vec{H}$ has bounded maximum outdegree, this gives an efficient representation of shortest paths of length at most $r$ in $G$. We show that graphs from many natural graph classes admit such weak guidance systems, and study the algorithmic aspects of this notion.


翻译:以美元表示的部分方向$\vec{H}$G$是一个薄弱的指导系统,如果对于以美元表示的距离最高为美元的任何两个顶点而言,其间存在一条最短的路径,即美元等于美元,因此美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元的部分方向。如果美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元,那么如果美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月20日
Arxiv
0+阅读 · 2022年11月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员