In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in $f(k)n^{O(1)}$ time and $f(k)\log n$ space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on `tree-structured graphs' are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by $\log n$, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a `natural home' for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most $f(k)n^{O(1)}$ and use $f(k)\log n$ space. Moreover, we introduce `tree-shaped' variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.
翻译:在本文中,我们引入了一个新的参数问题类别, 我们称之为 XALP : 所有参数性问题的类别, 可以用美元( k) n ⁇ % O(1) 美元时间和美元( k)\log n$) 来解决, 在一个非确定性巡航机上, 可以进入辅助堆( 仅允许进行顶级元素调查 ) 。 “ 树结构图” 上的各种自然问题对于这个类别来说是完整的 : 我们显示, 由树线( 树枝) 所标定的列表色和全无物流动参数是 XALP 完成的。 此外, 由树线除以 $\ log n$ 和 最大树型的 Max 削减 参数也是 XALP 。 除了找到这些问题的“ 自然家园 ” 之外, 我们还为未来减少问题铺平了道路。 我们给出了 XALP 类( 例如. XALP ) 类的等等量性特征, 由一个以树枝为底的调图理机可以解问题类别, 它的运行量最大是 $- 美元/ cal- fal- groal- groal- we) 。