As a phenomenon in dynamical systems allowing autonomous switching between stable behaviors, chaotic itinerancy has gained interest in neurorobotics research. In this study, we draw a connection between this phenomenon and the predictive coding theory by showing how a recurrent neural network implementing predictive coding can generate neural trajectories similar to chaotic itinerancy in the presence of input noise. We propose two scenarios generating random and past-independent attractor switching trajectories using our model.
翻译:作为允许稳定行为之间自动转换的动态系统中的一种现象,混乱的挥发性已经引起了对神经机器人研究的兴趣。在本研究中,我们通过展示一个执行预测编码的经常性神经网络如何在输入噪音的情况下产生类似于混乱的循环的神经轨迹,从而将这一现象与预测编码理论联系起来。我们提出两种情景产生随机和过去独立的吸引器转换轨迹,使用我们的模型。